

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Raman Spectra Study on $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ Single Crystal

Yun-Cheng Ge^a; Chao-Zhong Zhao^a

^a Physics Department, Harbin Normal University, Harbin, P. R. China

To cite this Article Ge, Yun-Cheng and Zhao, Chao-Zhong(1995) 'Raman Spectra Study on $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ Single Crystal', Spectroscopy Letters, 28: 3, 451 — 458

To link to this Article: DOI: 10.1080/00387019508009892

URL: <http://dx.doi.org/10.1080/00387019508009892>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

RAMAN SPECTRA STUDY ON $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ SINGLE CRYSTAL

Key Words: $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ crystal, Vibrational modes, Raman spectra, Doping effects

Yun-Cheng Ge

Chao-Zhong Zhao

Physics Department, Harbin Normal University, Harbin, 150080, P.R. China

ABSTRACT

In this letter, Raman spectra of $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ single crystal in both of its ferroelectric phase and paraelectric phase are presented for the first time. Comparing with LiTaO_3 crystal, we find that the distribution and Raman shifts of normal vibrational modes are similar, but the line-shape and relative intensities of these modes have changed.

INTRODUCTION

$\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ crystal is a new type of doped ferroelectric material(1)(2), it has similar properties and structure as LiTaO_3 crystal. Below ferroelectric Curie point(900K), it is in ferro-

electric phase with the C_{3v} point symmetry, and it will transform to paraelectric phase with the D_{3d} point symmetry when the temperature is above the Curie point. There are two formula units in the primitive cell of both of its two phases, so there are 27 degrees of freedom to be assigned to optical-phonon modes(3). Group theoretical analysis of the $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ structure yields 18 lattice modes in both of the ferroelectric phase and the paraelectric phase, of which 13 are Raman active in the ferroelectric phase and 5 are Raman active in the paraelectric phase, as shown below in TABLE 1.

In this paper, the doped effects on the lattice vibration of $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ single crystal are studied by Raman scattering spectra with right angle scattering geometry and forward geometry. All Raman active modes are observed in both of its two phases ,

TABLE 1

Normal Vibration Modes in Both Phases of $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ Crystal

Paraelectric	
Phase	$A_{1g}(R) + 3A_{2g} + 4E_g(R) + 2A_{1u} + 3A_{2u} + 5E_u$

Ferroelectric	
Phase	$4A_1(R) + 5A_2 + 9E(R)$

"(R)"Indicates that the mode just before it is Raman active mode.

the informations about doping effects are also given by comparing with the results of LiTaO₃ crystal.

EXPERIMENT

Good optical quality LiTa_{0.9}Nb_{0.1}O₃ crystal was grown by czochralski technique. The sample was cut and polished into rectangular block of 10*6*6 mm³ with edges within about 1° of the crystallographic axes, as determined by X-ray diffraction. The Raman spectra were recorded digitally using a SPEX 1403 double gratings monochromator spectrometer. Radiation of 514.5 nm from an argon ion laser(Innova 70), adjusted to 100mW was used for excitation and detection was made using a thermoelectrically cooled photomultiplier(Hamamatsu RCA C 31014). The spectrometer was totally controlled by a DM1B microcomputer. The spectra slits were 50μm-100μm-50μm. Under these conditions, the estimated frequency error was less than 1 cm⁻¹. For high temperature experiment, the sample was located in an electrically heated oven which controlled by a DWT 702 type temperature controlling apparatus produced in China and the temperature error was within 1 K.

RESULTS AND DISCUSSION

Ferroelectric Phase

The Raman shifts of four A₁(TO) modes in LiTaO₃ are 203 cm⁻¹, 250cm⁻¹, 356 cm⁻¹ and 598cm⁻¹, measured in our experiments. We defined them as A₁(TO)₁, A₁(TO)₂, A₁(TO)₃ and A₁(TO)₄, respectively

as shown in Fig.1(a). For the E(TO) modes, similar definition are given: $E(TO)_1-149\text{cm}^{-1}$, $E(TO)_2-211\text{cm}^{-1}$, $E(TO)_3-242\text{cm}^{-1}$, $E(TO)_4-314\text{cm}^{-1}$, $E(TO)_5-377\text{cm}^{-1}$, $E(TO)_6-461\text{cm}^{-1}$, $E(TO)_7-593\text{cm}^{-1}$, $E(TO)_8-656\text{cm}^{-1}$, $E(TO)_9-746\text{cm}^{-1}$, as denoted in Fig.3(a).

From Fig.1(b), we can see a broad peak at 209cm^{-1} it must be the result of overlapping between $A_1(TO)_1$ and $A_1(TO)_2$, for these two $A_1(TO)$ modes are close in frequencies, and it is easy for them to couple with each other when perturbation appearing as we found for the $A_1(TO)_1$ mode and the $A_1(TO)_2$ mode in ferroelectric phase transformation process in LiTaO_3 crystal(4). On the other hand, peaks broadening of the vibrational modes in doped matter should be considered when we discuss the overlapping phenomenon above, for it is shown in the scattering peaks of $A_1(TO)_3$ mode and $A_1(TO)_4$ mode, clearly. In order to clarify the mechanism of the overlapping phenomenon, we measured the Raman spectra of the crystal with forward scattering geometry to move the $A_1(TO)_1$ mode to lower frequency using dependence of frequency on wave vector of the polariton. The result is represented in Fig.2.

We find that the $A_1(TO)_2$ mode almost does not change while the $A_1(TO)_1$ mode moving to lower frequency range. So it is indicated that the overlapping phenomenon is essentially the result of peaks' broadening under doping.

For the E(TO) modes, similar results were observed, i.e. the overlapping phenomenon appeared for the $E(TO)_2$ and $E(TO)_3$ modes while no frequency shifts' changes were found in the other

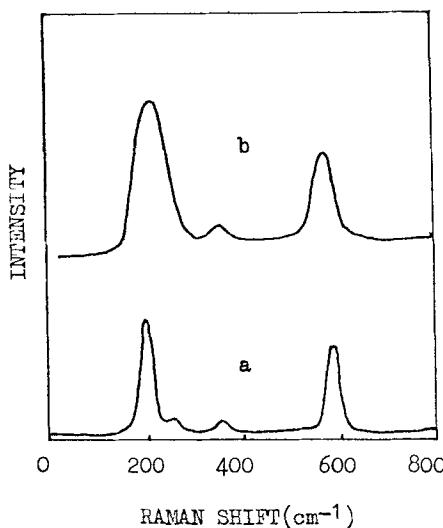


Fig. 1 Raman spectra of A₁(TO) modes in LiTaO₃ crystal (a) and LiTa_{0.9}Nb_{0.1}O₃ crystal at room temperature.

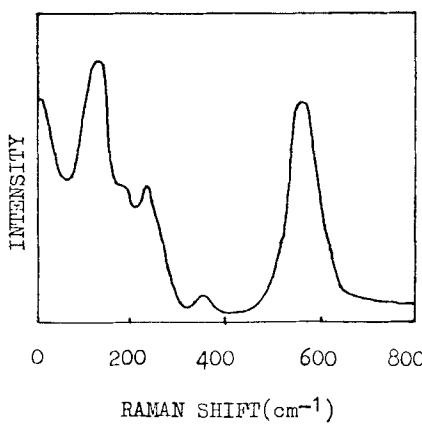


Fig. 2 Raman spectra of A₁ type polaritons in LiTa_{0.9}Nb_{0.1}O₃ crystal with forward scattering geometry.

modes. However, the relative intensities of the scattering peaks of these E(TO) modes changed. As shown in Fig.3.

Paraelectric Phase

All the five Raman active modes were observed for LiTaO_3 and $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ crystals, as presented in Fig.4.

It is seen that the frequency shifts of the Raman active modes in $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ crystal are almost the same as the case in LiTaO_3 crystal, but the scattering peaks are broadened and the differences in relative intensities are also observed. In order to distinguish the A_{1g} mode and the E_g modes of these two crystal in their paraelectric phase, polarised Raman spectra of them should be measured. For LiTaO_3 crystal, the results were presented in our previous work(5), i.e. the A_{1g} and E_g modes were observed in two different scattering geometry, respectively, i.e. A_{1g} mode in the X(ZZ)Y geometry and E_g modes in the X(ZY)Z geometry. However, in $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ crystal, all the five modes appeared in the X(ZZ)Y and X(ZY)Z geometries as nonpolarised Raman spectra. The A_{1g} and E_g modes in $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ crystal can not be distinguished in the polarised Raman spectra which geometry is defined under the axes of ferroelectric phase.

From the discussion above, it is shown that the behaviour of lattice vibrations of $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ crystal is similar to the LiTaO_3 crystal, i.e. the modes' distribution and the frequency shifts are similar. But the doping effects are also ob-

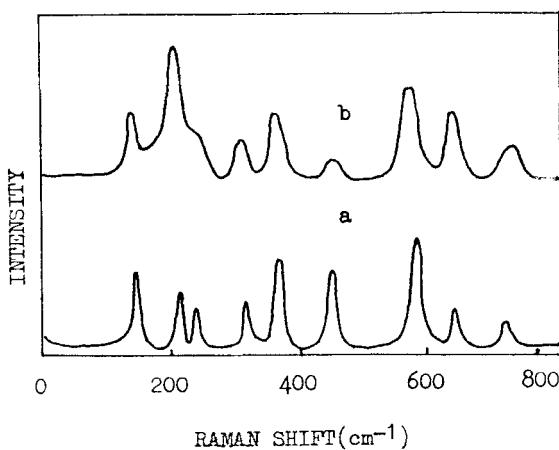


Fig. 3 Raman spectra of $\text{E}(\text{TO})$ modes in LiTaO_3 crystal (a) and $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ crystal (b) at room temperature.

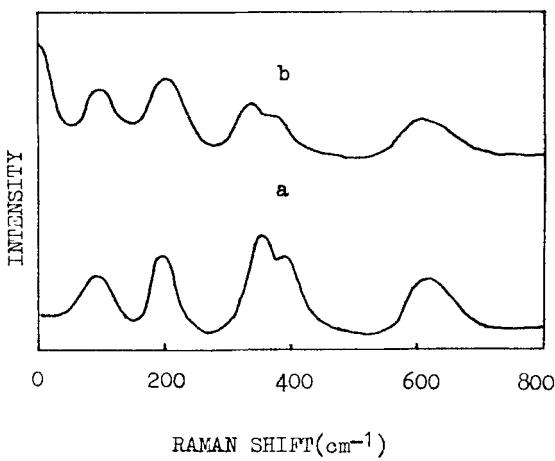


Fig. 4 Nonpolarised Raman spectra of LiTaO_3 crystal (a) and $\text{LiTa}_{0.9}\text{Nb}_{0.1}\text{O}_3$ crystal (b) at 1100K.

served, such as the broadening, coupling and relative intensity changing of scattering peaks, also the changes of the scattering geometry occurred in the paraelectric phase.

REFERENCES

1. Wang Hong and Wang Ming, *Journal of Crystal Growth*, 1986, 79, 527.
2. Fumio Shimura and yoshio Fujino, *Journal of Crystal Growth* , 1977, 38, 293.
3. A. F. Penna, A. Chaves, P. R. Andrade, and S. P. S. Porto *Phys. Rev.* , 1976, 13, 4907.
4. Yun-Cheng Ge, Chao-Zhong Zhao, *The Fourteenth International Conference on Raman Spectroscopy (to be published)*, Hong Kong, 8, 22-26, 1994.
5. Yun-Cheng Ge, Chao-Zhong Zhao, *The Fourteenth International Conference on Raman Spectroscopy (to be published)*, Hong Kong, 8, 22-26, 1994.

Date Received: September 30, 1994
Date Accepted: November 9, 1994